862 research outputs found

    Asymptotically optimal load balancing in large-scale heterogeneous systems with multiple dispatchers

    Get PDF
    We consider the load balancing problem in large-scale heterogeneous systems with multiple dispatchers. We introduce a general framework called Local-Estimation-Driven (LED). Under this framework, each dispatcher keeps local (possibly outdated) estimates of the queue lengths for all the servers, and the dispatching decision is made purely based on these local estimates. The local estimates are updated via infrequent communications between dispatchers and servers. We derive sufficient conditions for LED policies to achieve throughput optimality and delay optimality in heavy-traffic, respectively. These conditions directly imply delay optimality for many previous local-memory based policies in heavy traffic. Moreover, the results enable us to design new delay optimal policies for heterogeneous systems with multiple dispatchers. Finally, the heavy-traffic delay optimality of the LED framework also sheds light on a recent open question on how to design optimal load balancing schemes using delayed information

    Spectral 3d reconstruction based on macroscopic oct imaging

    Get PDF
    Various optical technologies have been utilized to improve art conservation by art conservators, such as laser triangulation, stereophotogrammetry, structured light, laser scanner and time of flight sensors. These methods have been deployed to capture the 3D or surface topography information of sculptures and architectures. Optical coherence tomography (OCT) has introduced new imaging methods to study the surface features and subsurface structures of delicate cultural heritage objects. However, despite its higher spatial resolution, the field of view (FOV) of OCT severely limits the size of the scanning area and does not allow macroscopic examination. To solve this issue, we develop and validate a hybrid scanning platform combined with effective algorithm for real-time sampling and artifact removal to achieve macroscopic OCT (macro-OCT) imaging and generate the spectral 3D reconstruction of impressionist style oil paintings as a digital model

    Frequency Recognition in SSVEP-based BCI using Multiset Canonical Correlation Analysis

    Full text link
    Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real EEG data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from ten healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs
    • …
    corecore